Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We explore how a realistic surface brightness (SB) detection limit ofμV≈ 32.5 mag arcsec−2for stars at the edges of ultrafaint galaxies affects our ability to infer their underlying properties. We use a sample of 19 galaxies with stellar masses ≈400–40,000M⊙simulated with FIRE-2 physics and baryonic mass resolution of 30M⊙. The SB cut leads to smaller sizes, lower stellar masses, and lower stellar velocity dispersions than the values inferred without the cut. However, by imposing this realistic limit, our inferred galaxy properties lie closer to observed populations in the mass-size plane, better match observed velocity dispersions as a function of stellar mass, and better reproduce derived circular velocities as a function of half-light radius. For the most massive galaxies in our sample, the SB cut leads to higher mean [Fe/H] values, but the increase is not enough to match the observed MZR. Finally, we demonstrate that the common J. Wolf et al. dynamical mass estimator is less accurate when the SB cut is applied. For our lowest-mass galaxies, in particular, excluding the low-surface brightness outskirts causes us to overestimate their central dark-matter densities and virial masses. This suggests that attempts to use mass estimates of ultrafaint galaxies to constrain dark-matter physics or to place constraints on the low-mass threshold of galaxy formation must take into account surface brightness limits or risk significant biases.more » « less
-
ABSTRACT We investigate the central density structure of dark matter haloes in cold dark matter (CDM) and self-interacting dark matter (SIDM) models using simulations that are part of the Feedback In Realistic Environments (fire) project. For simulated haloes of dwarf galaxy scale ($$M_{\rm halo}(z=0)\approx 10^{10}\, \mathrm{ M}_\odot$$), we study the central structure in both dissipationless simulations and simulations with full fire-2 galaxy formation physics. As has been demonstrated extensively in recent years, both baryonic feedback and self-interactions can convert central cusps into cores, with the former process doing so in a manner that depends sensitively on stellar mass at fixed $$M_{\rm halo}$$. Whether the two processes (baryonic feedback and self-interactions) are distinguishable, however, remains an open question. Here we demonstrate that, compared to feedback-induced cores, SIDM-induced cores transition more quickly from the central region of constant density to the falling density at larger radial scales. This result holds true even when including identical galaxy formation modelling in SIDM simulations as is used in CDM simulations, since self-interactions dominate over galaxy formation physics in establishing the central structure of SIDM haloes in this mass regime. The change in density profile slope as a function of radius therefore holds the potential to discriminate between self-interactions and galaxy formation physics as the driver of core formation in dwarf galaxies.more » « less
-
ABSTRACT We study the morphology of hundreds of simulated central galaxies in the stellar mass range $$M_\star =$$ 107.5–1011 $$\rm M_\odot$$ from the FIREbox cosmological volume. We demonstrate that FIREbox is able to predict a wide variety of morphologies, spanning from disc-dominated objects to spheroidal galaxies supported by stellar velocity dispersion. However, the simulations predict a strong relation between morphology (degree of rotational support) and stellar mass: galaxies comparable to the Milky Way are often disc-dominated while the presence of stellar discs mostly vanishes for dwarfs with $$M_\star < 10^9 ~$$\rm M_\odot$$. This defines a ‘morphology transition’ regime for galaxies with $$10^9 < M_\star /\rm {M_\odot }< 10^{10}$$ in which discs become increasingly common, but below which discs are rare. We show that burstiness in the star formation history and the deepening of the gravitational potential strongly correlate in our simulations with this transition regime, with discs forming in objects with lower levels of burstiness in the last $$\sim 6$$ Gyr and haloes with mass $$\sim 10^{11} ~ \rm {{\rm M}_{\odot }}$$ and above. While observations support a transition towards thicker discs in the regime of dwarfs, our results are in partial disagreement with observations of at least some largely rotationally supported gas discs in dwarfs with $$M_\star < 10^9$$\rm M_\odot$$. This study highlights dwarf morphology as a fundamental benchmark for testing future galaxy formation models.more » « less
-
Abstract ΛCDM cosmology predicts the hierarchical formation of galaxies, which build up mass by merger events and accreting smaller systems. The stellar halo of the Milky Way (MW) has proven to be useful a tool for tracing this accretion history. However, most of this work has focused on the outer halo where dynamical times are large and the dynamical properties of accreted systems are preserved. In this work, we investigate the inner galaxy regime, where dynamical times are relatively small and systems are generally completely phase mixed. Using the FIRE-2 and Auriga cosmological zoom-in simulation suites of MW-mass galaxies, we find the stellar density profiles along the minor axis (perpendicular to the galactic disk) within the Navarro–Frenk–White scale radii (R ≈ 15 kpc) are best described as an exponential disk with scale height < 0.3 kpc and a power-law component with slopeα ≈ −4. The stellar density amplitude and slope for the power-law component are not significantly correlated with metrics of the galaxy’s accretion history. Instead, we find the stellar profiles strongly correlate with the dark matter profile. Across simulation suites, the galaxies studied in this work have a stellar-to-dark-matter mass ratio that decreases as 1/r2along the minor axis.more » « less
-
Context.The detection of supermassive black holes (SMBHs) in high-redshift luminous quasars may require a phase of rapid accretion, and as a precondition, substantial gas influx toward seed black holes (BHs) from kiloparsec or parsec scales. Our previous research demonstrated the plausibility of such gas supply for BH seeds within star-forming giant molecular clouds (GMCs) with high surface density (∼104 M⊙ pc−2), facilitating “hyper-Eddington” accretion via efficient feeding by dense clumps, which are driven by turbulence and stellar feedback. Aims.This article presents an investigation of the impacts of feedback from accreting BHs on this process, including radiation, mechanical jets, and highly relativistic cosmic rays. Methods.We ran a suite of numerical simulations to explore diverse parameter spaces of BH feedback, including the subgrid accretion model, feedback energy efficiency, mass loading factor, and initial metallicity. Results.Using radiative feedback models inferred from the slim disk, we find that hyper-Eddington accretion is still achievable, yielding BH bolometric luminosities of as high as 1041 − 1044 erg/s, depending on the GMC properties and specific feedback model assumed. We find that the maximum possible mass growth of seed BHs (ΔMmaxBH) is regulated by the momentum-deposition rate from BH feedback,ṗfeedback/(ṀBHc), which leads to an analytic scaling that agrees well with simulations. This scenario predicts the rapid formation of ∼104M⊙intermediate-massive BHs (IMBHs) from stellar-mass BHs within ∼1 Myr. Furthermore, we examine the impacts of subgrid accretion models and how BH feedback may influence star formation within these cloud complexes.more » « less
-
Abstract The dust grain size distribution (GSD) likely varies significantly across star-forming environments in the Universe, but its impact on star formation remains unclear. This ambiguity arises because the GSD interacts nonlinearly with processes like heating, cooling, radiation, and chemistry, which have competing effects and varying environmental dependencies. Processes such as grain coagulation, expected to be efficient in dense star-forming regions, reduce the abundance of small grains and increase that of larger grains. Motivated by this, we investigate the effects of similar GSD variations on the thermochemistry and evolution of giant molecular clouds (GMCs) using magnetohydrodynamic simulations spanning a range of cloud masses and grain sizes, which explicitly incorporate the dynamics of dust grains within the full-physics framework of the STARFORGE project. We find that grain size variations significantly alter GMC thermochemistry: the leading-order effect is that larger grains, under fixed dust mass, GSD dynamic range, and dust-to-gas ratio, result in lower dust opacities. This reduced opacity permits interstellar radiation field and internal radiation photons to penetrate more deeply. This leads to rapid gas heating and inhibited star formation. Star formation efficiency is highly sensitive to grain size, with an order-of-magnitude reduction when grain size dynamic range increases from 10−3–0.1μm to 0.1–10μm. Additionally, warmer gas suppresses low-mass star formation, and decreased opacities result in a greater proportion of gas in diffuse ionized structures.more » « less
-
Abstract Using the FIRE-2 cosmological zoom-in simulations, we investigate the temporal evolution of gas-phase metallicity radial gradients of Milky Way–mass progenitors in the redshift range of 0.4 <z< 3. We pay special attention to the occurrence of positive (i.e., inverted) metallicity gradients—where metallicity increases with galactocentric radius. This trend, contrary to the more commonly observed negative radial gradients, has been frequently seen in recent spatially resolved grism observations. The rate of occurrence of positive gradients in FIRE-2 is about ∼7% for 0.4 <z< 3 and ∼13% at higher redshifts (1.5 <z< 3), broadly consistent with observations. Moreover, we investigate the correlations among galaxy metallicity gradient, stellar mass, star formation rate (SFR), and degree of rotational support. Metallicity gradients show a strong correlation with both sSFR and the rotational-to-dispersion velocity ratio (vc/σ), implying that starbursts and kinematic morphology of galaxies play significant roles in shaping these gradients. The FIRE-2 simulations indicate that galaxies with high sSFR ( ) and weak rotational support (vc/σ≲ 1) are more likely—by ∼15%—to develop positive metallicity gradients. This trend is attributed to galaxy-scale gas flows driven by stellar feedback, which effectively redistribute metals within the interstellar medium. Our results support the important role of stellar feedback in governing the chemo-structural evolution and disk formation of Milky Way–mass galaxies at the cosmic noon epoch.more » « less
-
Abstract Stars form within dense cores composed of both gas and dust within molecular clouds. However, despite the crucial role that dust plays in the star formation process, its dynamics is frequently overlooked, with the common assumption being a constant, spatially uniform dust-to-gas ratio and grain size spectrum. In this study, we introduce a set of radiation-dust-magnetohydrodynamic simulations of star-forming molecular clouds from the STARFORGE project. These simulations expand upon the earlier radiation MHD models, which included cooling, individual star formation, and feedback. Notably, they explicitly address the dynamics of dust grains, considering radiation, drag, and Lorentz forces acting on a diverse size spectrum of live dust grains. We find that once stars exceed a certain mass threshold (∼2M⊙), their emitted radiation can evacuate dust grains from their vicinity, giving rise to a dust-suppressed zone of size ∼100 au. This removal of dust, which interacts with gas through cooling, chemistry, drag, and radiative transfer, alters the gas properties in the region. Commencing during the early accretion stages and preceding the main-sequence phase, this process results in a mass-dependent depletion in the accreted dust-to-gas (ADG) mass ratio within both the circumstellar disk and the star. We predict that massive stars (≳10M⊙) would exhibit ADG ratios that are approximately 1 order of magnitude lower than that of their parent clouds. Consequently, stars, their disks, and circumstellar environments would display notable deviations in the abundances of elements commonly associated with dust grains, such as carbon and oxygen.more » « less
-
Abstract We utilize the cosmological volume simulation FIREbox to investigate how a galaxy’s environment influences its size and dark matter content. Our study focuses on approximately 1200 galaxies (886 central and 332 satellite halos) in the low-mass regime, with stellar masses between 106and 109M⊙. We analyze the size–mass relation (r50–M⋆), the inner dark matter mass–stellar mass ( –M⋆) relation, and the halo mass–stellar mass (Mhalo–M⋆) relation. At fixed stellar mass, we find that galaxies experiencing stronger tidal influences, indicated by higher Perturbation Indices (PI > 1) are generally larger and have lower halo masses relative to their counterparts with lower Perturbation Indices (PI < 1). Applying a Random Forest regression model, we show that both the environment (PI) and halo mass (Mhalo) are significant predictors of a galaxy’s relative size and dark matter content. Notably, becauseMhalois also strongly affected by the environment, our findings indicate that environmental conditions not only influence galactic sizes and relative inner dark matter content directly, but also indirectly, through their impact on halo mass. Our results highlight a critical interplay between environmental factors and halo mass in shaping galaxy properties, affirming the environment as a fundamental driver in galaxy formation and evolution.more » « less
-
ABSTRACT The cold ($$\sim 10^{4}\, {\rm K}$$) component of the circumgalactic medium (CGM) accounts for a significant fraction of all galactic baryons. However, using current galaxy-scale simulations to determine the origin and evolution of cold CGM gas poses a significant challenge, since it is computationally infeasible to directly simulate a galactic halo alongside the sub-pc scales that are crucial for understanding the interactions between cold CGM gas and the surrounding ‘hot’ medium. In this work, we introduce a new approach: the Cold Gas Subgrid Model (CGSM), which models unresolved cold gas as a second fluid in addition to the standard ‘normal’ gas fluid. The CGSM tracks the total mass density and bulk momentum of unresolved cold gas, deriving the properties of its unresolved cloudlets from the resolved gas phase. The interactions between the subgrid cold fluid and the resolved fluid are modelled by prescriptions from high-resolution simulations of ‘cloud crushing’ and thermal instability. Through a series of idealized tests, we demonstrate the CGSM’s ability to overcome the resolution limitations of traditional hydrodynamics simulations, successfully capturing the correct cold gas mass, its spatial distribution, and the time-scales for cloud destruction and growth. We discuss the implications of using this model in cosmological simulations to more accurately represent the microphysics that govern the galactic baryon cycle.more » « less
An official website of the United States government
